When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The triangle's nine-point circle has half the diameter of the circumcircle. In any given triangle, the circumcenter is always collinear with the centroid and orthocenter. The line that passes through all of them is known as the Euler line. The isogonal conjugate of the circumcenter is the orthocenter.

  3. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The circumference is 2 π r, and the area of a triangle is half the base times the height, yielding the area π r 2 for the disk. Prior to Archimedes, Hippocrates of Chios was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates , [ 2 ] but did not identify ...

  4. Circumscribed circle - Wikipedia

    en.wikipedia.org/wiki/Circumscribed_circle

    Circumcircle, the circumscribed circle of a triangle, which always exists for a given triangle. Cyclic polygon, a general polygon that can be circumscribed by a circle. The vertices of this polygon are concyclic points. All triangles are cyclic polygons. Cyclic quadrilateral, a special case of a cyclic polygon.

  5. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    The three splitters of a triangle all intersect each other at the Nagel point of the triangle. A cleaver of a triangle is a segment from the midpoint of a side of a triangle to the opposite side such that the perimeter is divided into two equal lengths. The three cleavers of a triangle all intersect each other at the triangle's Spieker center.

  6. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Using radians, the formula for the arc length s of a circular arc of radius r and subtending a central angle of measure 𝜃 is =, and the formula for the area A of a circular sector of radius r and with central angle of measure 𝜃 is A = 1 2 θ r 2 . {\displaystyle A={\frac {1}{2}}\theta r^{2}.}

  7. Circumference - Wikipedia

    en.wikipedia.org/wiki/Circumference

    The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...

  8. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    If also d = 0, the cyclic quadrilateral becomes a triangle and the formula is reduced to Heron's formula. The cyclic quadrilateral has maximal area among all quadrilaterals having the same side lengths (regardless of sequence). This is another corollary to Bretschneider's formula. It can also be proved using calculus. [12]

  9. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.