Search results
Results From The WOW.Com Content Network
Rayleigh waves emanating outward from the epicenter of an earthquake travel along the surface of the earth at about 10 times the speed of sound in air (0.340 km/s), that is ~3 km/s. Due to their higher speed, the P and S waves generated by an earthquake arrive before the surface waves.
Rayleigh waves, also called ground roll, are surface waves that propagate with motions that are similar to those of waves on the surface of water (note, however, that the associated seismic particle motion at shallow depths is typically retrograde, and that the restoring force in Rayleigh and in other seismic waves is elastic, not gravitational ...
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and
Earthquake seismologists however require the information seismic surface waves provide and thus design their equipment to amplify and gather as much information on these waves as possible. The work by early earthquake seismologists to extract substantial information from surface wave data was the basis for surface wave inversion theory.
Different types of waves, including P, S, Rayleigh, and Love waves can be used for tomographic images, though each comes with their own benefits and downsides and are used depending on the geologic setting, seismometer coverage, distance from nearby earthquakes, and required resolution.
A seismic wave is a wave that travels through the Earth, often as the result of an earthquake or explosion. Love waves have transverse motion (movement is perpendicular to the direction of travel, like light waves), whereas Rayleigh waves have both longitudinal (movement parallel to the direction of travel, like sound waves) and transverse ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Research on the origin of seismic noise [1] indicates that the low frequency part of the spectrum (below 1 Hz) is principally due to natural causes, chiefly ocean waves.In particular the globally observed peak between 0.1 and 0.3 Hz is clearly associated with the interaction of water waves of nearly equal frequencies but probating in opposing directions.