When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    Geometric progressions show exponential growth or exponential decline, as opposed to arithmetic progressions showing linear growth or linear decline. This comparison was taken by T.R. Malthus as the mathematical foundation of his An Essay on the Principle of Population .

  3. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    The geometric mean is more appropriate than the arithmetic mean for describing proportional growth, both exponential growth (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the compound annual growth rate (CAGR). The geometric mean of growth over periods yields the equivalent constant ...

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).

  5. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:

  6. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  7. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmeticgeometric_mean

    In mathematics, the arithmeticgeometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmeticgeometric mean is used in fast algorithms for exponential , trigonometric functions , and other special functions , as well as some ...

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    This estimate is sometimes referred to as the "geometric CV" (GCV), [19] [20] due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. The parameters μ and σ can be obtained, if the arithmetic mean and the arithmetic variance are known:

  9. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    Nomograms to graphically calculate arithmetic (1), geometric (2) and harmonic (3) means, z of x=40 and y=10 (red), and x=45 and y=5 (blue) Of all pairs of different natural numbers of the form ( a , b ) such that a < b , the smallest (as defined by least value of a + b ) for which the arithmetic, geometric and harmonic means are all also ...