Search results
Results From The WOW.Com Content Network
Electronic spin is generally short-lived and fragile, but the spin-based information in current devices needs to travel only a few nanometers. However, in processors, the information must cross several tens of micrometers with aligned spins. Graphene is the only known candidate for such behavior. [91]
Graphene (/ ˈ ɡ r æ f iː n /) [1] is a carbon allotrope consisting of a single layer of atoms arranged in a honeycomb planar nanostructure. [2] [3] The name "graphene" is derived from "graphite" and the suffix -ene, indicating the presence of double bonds within the carbon structure.
The buffer layer does not exhibit the intrinsic electronic structure of graphene but induces considerable n-doping in the overlying monolayer graphene film. [17] [18] This is a source of electronic scattering and leads therefore to major problems for future electronic device applications based on SiC-supported graphene structures. [19]
A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene, a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice. [1]
The graphene spray gun would be utilized onto large-scale applications such as circuits, radio transmitters, and optical electronics due to its transparency and its high electrical conductivity. [2] The supersonic spray system was first developed in May 2014 by University of Illinois professor Alexander Yarin , and Korea University professor ...
The electronic properties of graphene are significantly influenced by the supporting substrate. [59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C ...
So far, the graphene plasmonic effects have been demonstrated for different applications ranging from light modulation [15] [16] to biological/chemical sensing. [17] [18] [19] High-speed photodetection at 10 Gbit/s based on graphene and 20-fold improvement on the detection efficiency through graphene/gold nanostructure were also reported. [20]
Within the linear region, the electronic properties would be relatively stable under the slightly changing geometry. The energy gaps increase from -0.02 eV to 0.02 eV for the strain between -0.02 and 0.02, which provides the feasibilities for future engineering applications.