Search results
Results From The WOW.Com Content Network
The Voronoi diagram of a set of points is dual to that set's Delaunay triangulation. The Voronoi diagram is named after mathematician Georgy Voronoy, and is also called a Voronoi tessellation, a Voronoi decomposition, a Voronoi partition, or a Dirichlet tessellation (after Peter Gustav Lejeune Dirichlet).
As Fortune describes in ref., [1] a modified version of the sweep line algorithm can be used to construct an additively weighted Voronoi diagram, in which the distance to each site is offset by the weight of the site; this may equivalently be viewed as a Voronoi diagram of a set of disks, centered at the sites with radius equal to the weight of the site. the algorithm is found to have ...
The Delaunay triangulation of a discrete point set P in general position corresponds to the dual graph of the Voronoi diagram for P. The circumcenters of Delaunay triangles are the vertices of the Voronoi diagram. In the 2D case, the Voronoi vertices are connected via edges, that can be derived from adjacency-relationships of the Delaunay ...
A Voronoi diagram is a special kind of decomposition of a metric space determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. This diagram is named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation after Peter Gustav Lejeune ...
Let be the Voronoi diagram for a set of sites , and let be the Voronoi cell of corresponding to a site . If V p {\displaystyle V_{p}} is bounded, then its positive pole is the vertex of the boundary of V p {\displaystyle V_{p}} that has maximal distance to the point p {\displaystyle p} .
The general mathematical concept embodied in a Wigner–Seitz cell is more commonly called a Voronoi cell, and the partition of the plane into these cells for a given set of point sites is known as a Voronoi diagram. The construction process for the Wigner–Seitz cell of a hexagonal lattice. The cell may be chosen by first picking a lattice ...
Voronoi tessellation; A spatial network can be represented by a Voronoi diagram, which is a way of dividing space into a number of regions. The dual graph for a Voronoi diagram corresponds to the Delaunay triangulation for the same set of points. Voronoi tessellations are interesting for spatial networks in the sense that they provide a natural ...
This diagram arises, e.g., as a model of crystal growth, where crystals from different points may grow with different speed. Since crystals may grow in empty space only and are continuous objects, a natural variation is the crystal Voronoi diagram, in which the cells are defined somewhat differently. In an additively weighted Voronoi diagram ...