Search results
Results From The WOW.Com Content Network
Tendon cells synthesize the tendon's extracellular matrix, which abounds with densely-packed collagen fibers. The collagen fibers run parallel to each other and are grouped into fascicles. Each fascicle is bound by an endotendineum, which is a delicate loose connective tissue containing thin collagen fibrils [4] [5] and elastic fibers. [6]
Tendon cells, or tenocytes, are elongated fibroblast type cells. The cytoplasm is stretched between the collagen fibres of the tendon. They have a central cell nucleus with a prominent nucleolus. Tendon cells have a well-developed rough endoplasmic reticulum and they are responsible for synthesis and turnover of tendon fibres and ground substance.
The fibers are mainly composed of type I collagen. Crowded between the collagen fibers are rows of fibroblasts, fiber-forming cells, that generate the fibers. Dense connective tissue forms strong, rope-like structures such as tendons and ligaments. Tendons attach skeletal muscles to bones; ligaments connect bones to bones at joints.
The body of the Golgi tendon organ is made up of braided strands of collagen (intrafusal fasciculi) that are less compact than elsewhere in the tendon and are encapsulated. [2] The capsule is connected in series (along a single path) with a group of muscle fibers ( 10-20 fibers [ 3 ] ) at one end, and merge into the tendon proper at the other.
Collagen is a protein that strengthens and supports many tissues in the body, including cartilage, bone, tendon, skin and the white part of the eye ().The COL1A1 gene produces a component of type I collagen, called the pro-alpha1(I) chain.
An aponeurosis (/ ˌ æ p ə nj ʊəˈr oʊ s ɪ s /; pl.: aponeuroses) is a flattened tendon [1] by which muscle attaches to bone or fascia. [2] Aponeuroses exhibit an ordered arrangement of collagen fibres, thus attaining high tensile strength in a particular direction while being vulnerable to tensional or shear forces in other directions. [1]
Type I collagen is the most abundant collagen of the human body, consisting of around 90% of the body's total collagen in vertebrates. Due to this, it is also the most abundant protein type found in all vertebrates. Type I forms large, eosinophilic fibers known as collagen fibers, which make up most of the rope-like dense connective tissue in ...
Limited tests have been done on the tensile strength of the collagen fiber, but generally it has been shown to have a lower Young's modulus compared to fibrils. [55] When studying the mechanical properties of collagen, tendon is often chosen as the ideal material because it is close to a pure and aligned collagen structure. However, at the ...