Search results
Results From The WOW.Com Content Network
[38] [39] The surface states of a 3D topological insulator is a new type of two-dimensional electron gas (2DEG) where the electron's spin is locked to its linear momentum. [31] Fully bulk-insulating or intrinsic 3D topological insulator states exist in Bi-based materials as demonstrated in surface transport measurements. [40]
It indicates the mathematical group for the topological invariant of the topological insulators and topological superconductors, given a dimension and discrete symmetry class. [1] The ten possible discrete symmetry families are classified according to three main symmetries: particle-hole symmetry , time-reversal symmetry and chiral symmetry .
A topological insulator is a material that behaves as an insulator in its interior (bulk) but whose surface contains conducting states. This property represents a non-trivial, symmetry protected topological order. As a consequence, electrons in topological insulators can only move along the surface of the material.
Kane is notable for theoretically predicting the quantum spin Hall effect (originally in graphene) and what would later be known as topological insulators. [1] [2] He received the 2012 Dirac Prize, along with Shoucheng Zhang and Duncan Haldane, for their groundbreaking work on two- and three-dimensional topological insulators.
[2] A "backwards" stacking regime allows the creation of a Chern insulator via the anomalous quantum Hall effect (with the edges of the device acting as a conductor while the interior acted as an insulator.) The device functioned at a temperature of 5 Kelvins, far above the temperature at which the effect had first been observed. [2]
In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. [1] [2] [3] In these materials, at energies near the Fermi level, the valence band and conduction band take the shape of the upper and lower halves of a ...
Topological plexcitons make use of the properties of TIs to achieve similar control over the direction of current flow. [3] Plexcitons were found to emerge from an organic molecular layer (excitons) and a metallic film (plasmons). Dirac cones appeared in the plexcitons' two-dimensional band-structure. An external magnetic field created a gap ...
As a special case, a non-empty topological space is zero-dimensional with respect to the covering dimension if every open cover of the space has a refinement consisting of disjoint open sets, meaning any point in the space is contained in exactly one open set of this refinement.