When.com Web Search

  1. Ad

    related to: pole strength of bar magnet definition economics terms pdf printable blank

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    The magnetic force produced by a bar magnet, at a given point in space, therefore depends on two factors: the strength p of its poles (magnetic pole strength), and the vector separating them. The magnetic dipole moment m is related to the fictitious poles as [ 7 ] m = p ℓ . {\displaystyle \mathbf {m} =p\,\mathrm {\boldsymbol {\ell }} \,.}

  3. Dipole magnet - Wikipedia

    en.wikipedia.org/wiki/Dipole_magnet

    A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. The simplest example of a dipole magnet is a bar magnet. [1]

  4. Quadrupole magnet - Wikipedia

    en.wikipedia.org/wiki/Quadrupole_magnet

    Quadrupole magnet. Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude ...

  5. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    Force between magnets. Magnets exert forces and torques on each other through the interaction of their magnetic fields. The forces of attraction and repulsion are a result of these interactions. The magnetic field of each magnet is due to microscopic currents of electrically charged electrons orbiting nuclei and the intrinsic magnetism of ...

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    For simple magnets, m points in the direction of a line drawn from the south to the north pole of the magnet. Flipping a bar magnet is equivalent to rotating its m by 180 degrees. The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The ...

  7. Dipole - Wikipedia

    en.wikipedia.org/wiki/Dipole

    A permanent magnet, such as a bar magnet, owes its magnetism to the intrinsic magnetic dipole moment of the electron. The two ends of a bar magnet are referred to as poles (not to be confused with monopoles, see Classification below) and may be labeled "north" and "south". In terms of the Earth's magnetic field, they are respectively "north ...

  8. Demagnetizing field - Wikipedia

    en.wikipedia.org/wiki/Demagnetizing_field

    t. e. The demagnetizing field, also called the stray field (outside the magnet), is the magnetic field (H-field) [1] generated by the magnetization in a magnet. The total magnetic field in a region containing magnets is the sum of the demagnetizing fields of the magnets and the magnetic field due to any free currents or displacement currents.

  9. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).