When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    G = τ / γ = E / [2 (1 + ν)] Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1] where. = shear stress. is the force which acts. is the area on which the force ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    A schematic diagram for the stress–strain curve of low carbon steel at room temperature is shown in figure 1. There are several stages showing different behaviors, which suggests different mechanical properties. To clarify, materials can miss one or more stages shown in figure 1, or have totally different stages.

  5. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...

  6. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.

  7. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The CRSS is the value of resolved shear stress at which yielding of the grain occurs, marking the onset of plastic deformation. CRSS, therefore, is a material property and is not dependent on the applied load or grain orientation. The CRSS is related to the observed yield strength of the material by the maximum value of the Schmid factor:

  8. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    The modulus of elasticity can be used to determine the stress–strain relationship in the linear-elastic portion of the stress–strain curve. The linear-elastic region is either below the yield point, or if a yield point is not easily identified on the stress–strain plot it is defined to be between 0 and 0.2% strain, and is defined as the ...

  9. Dynamic modulus - Wikipedia

    en.wikipedia.org/wiki/Dynamic_modulus

    Dynamic modulus. Dynamic modulus (sometimes complex modulus[1]) is the ratio of stress to strain under vibratory conditions (calculated from data obtained from either free or forced vibration tests, in shear, compression, or elongation). It is a property of viscoelastic materials.