When.com Web Search

  1. Ad

    related to: laplacian matrix vertex method pdf free download for windows 7 for pc

Search results

  1. Results From The WOW.Com Content Network
  2. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    An analogue of the Laplacian matrix can be defined for directed multigraphs. [7] In this case the Laplacian matrix L is defined as = where D is a diagonal matrix with D i,i equal to the outdegree of vertex i and A is a matrix with A i,j equal to the number of edges from i to j (including loops).

  3. Calculus on finite weighted graphs - Wikipedia

    en.wikipedia.org/wiki/Calculus_on_finite...

    Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or ...

  4. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid.For the case of a finite-dimensional graph (having a finite number of edges and vertices), the discrete Laplace operator is more commonly called the Laplacian matrix.

  5. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The famous Cheeger's inequality from Riemannian geometry has a discrete analogue involving the Laplacian matrix; this is perhaps the most important theorem in spectral graph theory and one of the most useful facts in algorithmic applications. It approximates the sparsest cut of a graph through the second eigenvalue of its Laplacian.

  6. Degree matrix - Wikipedia

    en.wikipedia.org/wiki/Degree_matrix

    where the degree ⁡ of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...

  7. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1] This eigenvalue is greater than 0 if and only if G is a connected graph. This is a corollary to the fact that the number ...

  8. Spectral clustering - Wikipedia

    en.wikipedia.org/wiki/Spectral_clustering

    The graph Laplacian can be and commonly is constructed from the adjacency matrix. The construction can be performed matrix-free, i.e., without explicitly forming the matrix of the graph Laplacian and no AO. It can also be performed in-place of the adjacency matrix without increasing the memory footprint.

  9. Nine-point stencil - Wikipedia

    en.wikipedia.org/wiki/Nine-point_stencil

    Both are isotropic forms of discrete Laplacian, [8] and in the limit of small Δx, they all become equivalent, [11] as Oono-Puri being described as the optimally isotropic form of discretization, [8] displaying reduced overall error, [2] and Patra-Karttunen having been systematically derived by imposing conditions of rotational invariance, [9 ...

  1. Related searches laplacian matrix vertex method pdf free download for windows 7 for pc

    laplacian matrix vertexlaplacian graph matrix
    laplacian matrixlaplacian matrix vertical entry
    laplacian matrix examples