When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    For example, the ionization energy gained by adding an electron to a hydrogen nucleus is 13.6 eV —less than one-millionth of the 17.6 MeV released in the deuterium–tritium (D–T) reaction shown in the adjacent diagram. Fusion reactions have an energy density many times greater than nuclear fission; the reactions produce far greater energy ...

  3. Fusion power - Wikipedia

    en.wikipedia.org/wiki/Fusion_power

    Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy.

  4. The Hope and Hype of Fusion Energy, Explained - AOL

    www.aol.com/news/hope-hype-fusion-energy...

    The enormous commercial and social pressures to decarbonize are directing the oil and gas industry toward synthetic fuels, which require heat to produce. Fusion companies can deliver that heat ...

  5. Deuterium–tritium fusion - Wikipedia

    en.wikipedia.org/wiki/Deuterium–tritium_fusion

    Deuterium–tritium fusion (DTF) is a type of nuclear fusion in which one deuterium (2 H) nucleus (deuteron) fuses with one tritium (3 H) nucleus (triton), giving one helium-4 nucleus, one free neutron, and 17.6 MeV of total energy coming from both the neutron and helium. It is the best known fusion reaction for fusion power and thermonuclear ...

  6. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.

  7. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The total energy yield of one whole chain is 26.73 MeV. Energy released as gamma rays will interact with electrons and protons and heat the interior of the Sun. Also kinetic energy of fusion products (e.g. of the two protons and the 4 2 He from the p–p I reaction) adds energy to the plasma in the Sun.

  8. Tokamak - Wikipedia

    en.wikipedia.org/wiki/Tokamak

    To maintain fusion and produce net energy output, the bulk of the fuel must be raised to high temperatures so its atoms are constantly colliding at high speed; this gives rise to the name thermonuclear due to the high temperatures needed to bring it about.

  9. Carbon-burning process - Wikipedia

    en.wikipedia.org/wiki/Carbon-burning_process

    Fusion produces less energy per unit mass as the fuel nuclei get heavier, and the core of the star contracts and heats up when switching from one fuel to the next, so both these processes also significantly reduce the lifetime of each successive fusion-burning fuel. Up to the helium burning stage the neutrino losses are negligible.