Search results
Results From The WOW.Com Content Network
Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S where m C , m H , m O , m N , and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the Earth of about 2690 MJ/kg.
1.80 [16] 1.26: battery, Fluoride-ion [citation needed] 1.7: 2.8: battery, Hydrogen closed cycle H fuel cell [17] 1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation ...
The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]
R ∗ = 8.314 32 × 10 3 N⋅m⋅kmol −1 ⋅K −1 = 8.314 32 J⋅K −1 ⋅mol −1. Note the use of the kilomole, with the resulting factor of 1000 in the constant. The USSA1976 acknowledges that this value is not consistent with the cited values for the Avogadro constant and the Boltzmann constant. [ 13 ]
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
1.0 Mcal (4.2 MJ) ... mcal (4.2 mJ) Calorie (thermochemical) Cal-th (kg-cal-th) Cal th: 1.0 Cal th (4.2 kJ) ... 1.0 ft⋅lbf (1.4 J) ftlb-f ft⋅lb f: foot-pound ...