Search results
Results From The WOW.Com Content Network
The sensible heat of a thermodynamic process may be calculated as the product of the body's mass (m) with its specific heat capacity (c) and the change in temperature (): =. Joule described sensible heat as the energy measured by a thermometer. Sensible heat and latent heat are not special forms of energy. Rather, they describe exchanges of ...
A current student text on chemistry defines heat thus: "heat is the exchange of thermal energy between a system and its surroundings caused by a temperature difference." The author then explains how heat is defined or measured by calorimetry, in terms of heat capacity, specific heat capacity, molar heat capacity, and temperature. [42]
The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire system, as contrasted with intensive parameters which can be defined at a single point ...
Firstly, thermo-("of heat"; used in words such as thermometer) can be traced back to the root θέρμη therme, meaning "heat". Secondly, the word dynamics ("science of force [or power]") [22] can be traced back to the root δύναμις dynamis, meaning "power". [23] [24] In 1849, the adjective thermo-dynamic is used by William Thomson. [25 ...
The generalized force, X, corresponding to the external parameter x is defined such that is the work performed by the system if x is increased by an amount dx. E.g., if x is the volume, then X is the pressure. The generalized force for a system known to be in energy eigenstate is given by:
where is specific enthalpy, =: is dissipation function and is temperature. And where = (+) i.e. internal energy per unit volume equals mass density times the sum of: proper energy per unit mass, kinetic energy per unit mass, and gravitational potential energy per unit mass.
The heat equation is the prototypical example of a parabolic partial differential equation. Using the Laplace operator, the heat equation can be simplified, and generalized to similar equations over spaces of arbitrary number of dimensions, as = =,
Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number of degrees of freedom of the molecules. [ 25 ] [ 26 ] [ 27 ] Quantum statistical mechanics predicts that each rotational or vibrational mode can only take or lose energy in certain discrete amounts (quanta), and that this affects the ...