Ads
related to: simplifying using exponent rules
Search results
Results From The WOW.Com Content Network
If exponentiation is indicated by stacked symbols using superscript notation, the usual rule is to work from the top down: [2] [7] a b c = a (b c) which typically is not equal to (a b) c. This convention is useful because there is a property of exponentiation that (a b) c = a bc, so it's unnecessary to use serial exponentiation for this.
Exponentiation with negative exponents is defined by the following identity, which holds for any integer n and nonzero b: =. [1] Raising 0 to a negative exponent is undefined but, in some circumstances, it may be interpreted as infinity (). [24]
For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...
In order to better distinguish this base-2 exponent from a base-10 exponent, a base-2 exponent is sometimes also indicated by using the letter "B" instead of "E", [26] a shorthand notation originally proposed by Bruce Alan Martin of Brookhaven National Laboratory in 1968, [27] as in 1.001 b B11 b (or shorter: 1.001B11).
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include: