Search results
Results From The WOW.Com Content Network
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function . The various studies of the behaviour of the divisor function are sometimes called divisor problems .
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
A divisor of an integer n is an integer m, for which n/m is again an integer (which is necessarily also a divisor of n). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n, then so is −m. The tables below only list positive divisors.
An example of an arithmetic function is the divisor function whose value at a positive integer n is equal to the number of divisors of n. Arithmetic functions are often extremely irregular (see table ), but some of them have series expansions in terms of Ramanujan's sum .
1 ∗ 1 = σ 0 = d = τ, where d = τ is the number of divisors of n, (see divisor function). Both of these lists of functions extend infinitely in both directions. The Möbius inversion formula enables these lists to be traversed backwards. As an example the sequence starting with φ is:
A positive divisor of that is different from is called a proper divisor or an aliquot part of (for example, the proper divisors of 6 are 1, 2, and 3). A number that does not evenly divide but leaves a remainder is sometimes called an aliquant part of . An integer > whose only proper divisor is 1 is called a prime number. Equivalently, a prime ...
Multiplicative number theory is a subfield of analytic number theory that deals with prime numbers and with factorization and divisors. The focus is usually on developing approximate formulas for counting these objects in various contexts. The prime number theorem is a key result in this subject.
Abundancy may also be expressed as () where denotes a divisor function with () equal to the sum of the k-th powers of the divisors of n. The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14 ...