Search results
Results From The WOW.Com Content Network
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
Two extremes of the thermal cracking in terms of the product range are represented by the high-temperature process called "steam cracking" or pyrolysis (ca. 750 °C to 900 °C or higher) which produces valuable ethylene and other feedstocks for the petrochemical industry, and the milder-temperature delayed coking (ca. 500 °C) which can produce ...
In chemistry, the Z-matrix is a way to represent a system built of atoms.A Z-matrix is also known as an internal coordinate representation.It provides a description of each atom in a molecule in terms of its atomic number, bond length, bond angle, and dihedral angle, the so-called internal coordinates, [1] [2] although it is not always the case that a Z-matrix will give information regarding ...
A higher cracking temperature (also referred to as severity) favors the production of ethene and benzene, whereas lower severity produces higher amounts of propene, C4-hydrocarbons and liquid products. The process also results in the slow deposition of coke, a form of carbon, on the reactor walls. This degrades the efficiency of the reactor, so ...
One or more of the hydrogen atoms can be replaced with other atoms, for example chlorine or another halogen: this is called a substitution reaction. An example is the conversion of methane to chloroform using a chlorination reaction. Halogenating a hydrocarbon produces something that is not a hydrocarbon. It is a very common and useful process.
Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C 2 H 4 or H 2 C=CH 2. It is a colourless, flammable gas with a faint "sweet and musky " odour when pure. [ 7 ] It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds ).
The combustion of ethane releases 1559.7 kJ/mol, or 51.9 kJ/g, of heat, and produces carbon dioxide and water according to the chemical equation: 2 C 2 H 6 + 7 O 2 → 4 CO 2 + 6 H 2 O + 3120 kJ. Combustion may also occur without an excess of oxygen, yielding carbon monoxide, acetaldehyde, methane, methanol, and ethanol.
Generally, the choice of method is governed by the raw material and energy situations as well as by the availability of oxygen at a reasonable price. In general, 100 parts of ethene gives: 95 parts acetaldehyde; 1.9 parts chlorinated aldehydes; 1.1 parts unconverted ethene; 0.8 parts carbon dioxide; 0.7 parts acetic acid; 0.1 parts chloromethane