Search results
Results From The WOW.Com Content Network
Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in ...
Pages in category "Generating functions" The following 12 pages are in this category, out of 12 total. This list may not reflect recent changes. ...
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution.Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The generating function F for this transformation is of the third kind, = (,). To find F explicitly, use the equation for its derivative from the table above, =, and substitute the expression for P from equation , expressed in terms of p and Q:
The main article gives examples of generating functions for many sequences. Other examples of generating function variants include Dirichlet generating functions (DGFs), Lambert series, and Newton series. In this article we focus on transformations of generating functions in mathematics and keep a running list of useful transformations and ...
Other generating functions of random variables include the moment-generating function, the characteristic function and the cumulant generating function. The probability generating function is also equivalent to the factorial moment generating function , which as E [ z X ] {\displaystyle \operatorname {E} \left[z^{X}\right]} can also be ...
The left-hand side of the equation is the generating function for the Legendre polynomials. As an example, the electric potential Φ( r , θ ) (in spherical coordinates ) due to a point charge located on the z -axis at z = a (see diagram right) varies as Φ ( r , θ ) ∝ 1 R = 1 r 2 + a 2 − 2 a r cos θ . {\displaystyle \Phi (r,\theta ...