Search results
Results From The WOW.Com Content Network
positive skew: The right tail is longer; the mass of the distribution is concentrated on the left of the figure. The distribution is said to be right-skewed, right-tailed, or skewed to the right, despite the fact that the curve itself appears to be skewed or leaning to the left; right instead refers to the right tail being drawn out and, often ...
Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution
Normal probability plot of a sample from a right-skewed distribution – it has an inverted C shape. Histogram of a sample from a right-skewed distribution – it looks unimodal and skewed right. This is a sample of size 50 from a uniform distribution, plotted as both a histogram, and a normal probability plot.
Roughly speaking, a distribution has positive skew (right-skewed) if the higher tail is longer, and negative skew (left-skewed) if the lower tail is longer. Perfectly symmetrical distributions always have zero skewness, though zero skewness does not necessarily imply a symmetrical distribution.
This histogram shows the number of cases per unit interval as the height of each block, so that the area of each block is equal to the number of people in the survey who fall into its category. The area under the curve represents the total number of cases (124 million). This type of histogram shows absolute numbers, with Q in thousands.
In this manner, a distribution that is skewed to the right is transformed into a distribution that is skewed to the left and vice versa. Example . The F-expression of the positively skewed Gumbel distribution is: F=exp[-exp{-( X - u )/0.78 s }], where u is the mode (i.e. the value occurring most frequently) and s is the standard deviation .
The asymmetric generalized normal distribution can be used to model values that may be normally distributed, or that may be either right-skewed or left-skewed relative to the normal distribution. The skew normal distribution is another distribution that is useful for modeling deviations from normality due to skew.
An example of a skewed distribution is personal wealth: Few people are very rich, but among those some are extremely rich. However, many are rather poor. Comparison of mean, median and mode of two log-normal distributions with different skewness. A well-known class of distributions that can be arbitrarily skewed is given by the log-normal ...