Ad
related to: what does dnase do to dna synthesis process diagram answer page template
Search results
Results From The WOW.Com Content Network
DNase enzymes can be inhaled using a nebulizer by cystic fibrosis sufferers. DNase enzymes help because white blood cells accumulate in the mucus, and, when they break down, they release DNA, which adds to the 'stickiness' of the mucus. DNase enzymes break down the DNA, and the mucus is much easier to clear from the lungs.
DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides.
By doing this, the DNA is more accessible and leads to more transcription factors being able to reach the DNA. Thus, acetylation of histones is known to increase the expression of genes through transcription activation. Deacetylation performed by HDAC molecules has the opposite effect.
DNA occurs in nature as a right-handed double helix and in asymmetric synthesis a chiral catalyst is a valuable tool in the synthesis of chiral molecules from an achiral source. In one application an artificial DNA catalyst was prepared by attaching a copper ion to it through a spacer. [ 46 ]
Deoxyribonuclease II (EC 3.1.22.1, DNase II, pancreatic DNase II, deoxyribonucleate 3'-nucleotidohydrolase, pancreatic DNase II, acid deoxyribonuclease, acid DNase) is an endonuclease that hydrolyzes phosphodiester linkages of deoxyribonucleotide in native and denatured DNA, yielding products with 3'-phosphates and 5'-hydroxyl ends, which occurs as a result of single-strand cleaving mechanism. [1]
In molecular biology, endonucleases are enzymes that cleave the phosphodiester bond within a polynucleotide chain (namely DNA or RNA).Some, such as deoxyribonuclease I, cut DNA relatively nonspecifically (with regard to sequence), while many, typically called restriction endonucleases or restriction enzymes, cleave only at very specific nucleotide sequences.
Multiple DNA polymerases have specialized roles in the DNA replication process. In E. coli, which replicates its entire genome from a single replication fork, the polymerase DNA Pol III is the enzyme primarily responsible for DNA replication and forms a replication complex with extremely high processivity.