Search results
Results From The WOW.Com Content Network
Iron oxides feature as ferrous or ferric or both. They adopt octahedral or tetrahedral coordination geometry. Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite. Oxides of Fe II. FeO: iron(II) oxide, wüstite; Mixed oxides of Fe II and Fe III. Fe 3 O 4: Iron(II,III) oxide, magnetite; Fe 4 O ...
Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...
Simplified diagram of the iron oxide cycle. For chemical reactions, the iron oxide cycle (Fe 3 O 4 /FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. [1] It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe 3+ and Fe 2+.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Iron forms various oxide and hydroxide compounds; the most common are iron(II,III) oxide (Fe 3 O 4), and iron(III) oxide (Fe 2 O 3). Iron(II) oxide also exists, though it is unstable at room temperature. Despite their names, they are actually all non-stoichiometric compounds whose compositions may vary. [12] These oxides are the principal ores ...
A thermite reaction using iron(III) oxide. The sparks flying outwards are globules of molten iron trailing smoke in their wake. In the following example, elemental aluminium reduces the oxide of another metal, in this common example iron oxide, because aluminium forms stronger and more stable bonds with oxygen than iron:
Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe 3 O 4. It occurs in nature as the mineral magnetite . It is one of a number of iron oxides , the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe 2 O 3 ) which also occurs naturally as the mineral hematite .
For example, metallic aluminium can reduce iron oxide to metallic iron, the aluminium itself being oxidized to aluminium oxide. (This reaction is employed in thermite.) The greater the gap between any two lines, the greater the effectiveness of the reducing agent corresponding to the lower line.