When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Brightness temperature - Wikipedia

    en.wikipedia.org/wiki/Brightness_temperature

    Brightness temperature or radiance temperature is a measure of the intensity of electromagnetic energy coming from a source. [1] In particular, it is the temperature at which a black body would have to be in order to duplicate the observed intensity of a grey body object at a frequency ν {\displaystyle \nu } . [ 2 ]

  3. Kirchhoff's law of thermal radiation - Wikipedia

    en.wikipedia.org/wiki/Kirchhoff's_law_of_thermal...

    In slightly different terms, the emissive power of an arbitrary opaque body of fixed size and shape at a definite temperature can be described by a dimensionless ratio, sometimes called the emissivity: the ratio of the emissive power of the body to the emissive power of a black body of the same size and shape at the same fixed temperature. With ...

  4. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    Wavelength- and subwavelength-scale particles, [5] metamaterials, [6] and other nanostructures [7] are not subject to ray-optical limits and may be designed to have an emissivity greater than 1. In national and international standards documents, the symbol M {\displaystyle M} is recommended to denote radiant exitance ; a superscript circle ...

  5. Radiance - Wikipedia

    en.wikipedia.org/wiki/Radiance

    Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr −1 ·m −2). It is a directional quantity: the radiance of a surface depends on the direction from which it is ...

  6. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  7. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    Comparison of Rayleigh–Jeans law with Wien approximation and Planck's law, for a body of 5800 K temperature.. In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments.

  8. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    Black-body radiation has a characteristic, continuous frequency spectrum that depends only on the body's temperature, [8] called the Planck spectrum or Planck's law. The spectrum is peaked at a characteristic frequency that shifts to higher frequencies with increasing temperature, and at room temperature most of the emission is in the infrared ...

  9. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    This equation may also be written as [3] [6] (,) =, where (,) is the amount of energy per unit surface area per unit time per unit solid angle per unit wavelength emitted at a wavelength λ. Wien acknowledges Friedrich Paschen in his original paper as having supplied him with the same formula based on Paschen's experimental observations.