When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.

  3. Gauss congruence - Wikipedia

    en.wikipedia.org/wiki/Gauss_congruence

    In mathematics, Gauss congruence is a property held by certain sequences of integers, including the Lucas numbers and the divisor sum sequence. Sequences satisfying this property are also known as Dold sequences, Fermat sequences, Newton sequences, and realizable sequences. [ 1 ]

  4. Table of congruences - Wikipedia

    en.wikipedia.org/wiki/Table_of_congruences

    Clement's congruence-based theorem characterizes the twin primes pairs of the form (, +) through the following conditions: [()! +] ((+)), +P. A. Clement's original 1949 paper [2] provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem.

  5. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    The products of x and y values together form a congruence of squares. This is a classic system of linear equations problem, and can be efficiently solved using Gaussian elimination as soon as the number of rows exceeds the number of columns. Some additional rows are often included to ensure that several solutions exist in the nullspace of our ...

  6. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [ a ] The word isometry is derived from the Ancient Greek : ἴσος isos meaning "equal", and μέτρον metron meaning "measure".

  7. Congruence lattice problem - Wikipedia

    en.wikipedia.org/wiki/Congruence_lattice_problem

    In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most famous and long-standing open problems in lattice theory; it had a deep impact on the development of lattice theory itself.

  8. Congruence subgroup - Wikipedia

    en.wikipedia.org/wiki/Congruence_subgroup

    An important question regarding the algebraic structure of arithmetic groups is the congruence subgroup problem, which asks whether all subgroups of finite index are essentially congruence subgroups. Congruence subgroups of 2 × 2 matrices are fundamental objects in the classical theory of modular forms ; the modern theory of automorphic forms ...

  9. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants . In geometry , two figures or objects are congruent if they have the same shape and size , or if one has the same shape and size as the mirror image of the other.