Search results
Results From The WOW.Com Content Network
In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1]
where V 100 is the volume occupied by a given sample of gas at 100 °C; V 0 is the volume occupied by the same sample of gas at 0 °C; and k is a constant which is the same for all gases at constant pressure. This equation does not contain the temperature and so is not what became known as Charles's Law.
A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...
The pure component's molar volume and molar enthalpy are equal to the corresponding partial molar quantities because there is no volume or internal energy change on mixing for an ideal solution. The molar volume of a mixture can be found from the sum of the excess volumes of the components of a mixture:
In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.
Gay-Lussac used the formula acquired from ΔV/V = αΔT to define the rate of expansion α for gases. For air, he found a relative expansion ΔV/V = 37.50% and obtained a value of α = 37.50%/100 °C = 1/266.66 °C which indicated that the value of absolute zero was approximately 266.66 °C below 0 °C. [ 12 ]
where p is the pressure, V is volume, n is the polytropic index, and C is a constant. The polytropic process equation describes expansion and compression processes which include heat transfer. The polytropic process equation describes expansion and compression processes which include heat transfer.
β is the coefficient of volume expansion (equal to approximately 1/T for ideal gases) T s is the surface temperature; T ∞ is the bulk temperature; L is the vertical length; D is the diameter; ν is the kinematic viscosity. The L and D subscripts indicate the length scale basis for the Grashof number.