When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable. [1]

  3. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron is a neural net developed by psychologist Frank Rosenblatt in 1958 and is one of the most famous machines of its period. [11] [12] In 1960, Rosenblatt and colleagues were able to show that the perceptron could in finitely many training cycles learn any task that its parameters could embody.

  4. Frank Rosenblatt - Wikipedia

    en.wikipedia.org/wiki/Frank_Rosenblatt

    The third covers multi-layer and cross-coupled perceptrons, and the fourth back-coupled perceptrons and problems for future study. Rosenblatt used the book to teach an interdisciplinary course entitled "Theory of Brain Mechanisms" that drew students from Cornell's Engineering and Liberal Arts colleges.

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  6. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    The bottom layer of inputs is not always considered a real neural network layer. A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized ...

  7. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem . The identity activation function does not satisfy this property.

  8. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  9. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron was organized into three layers: [2] A set of sensory units which receive optical input; A set of association units, each of which fire based on input from multiple sensory units; A set of response units, which fire based on input from multiple association units; The connection between sensory units and association units ...