Search results
Results From The WOW.Com Content Network
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.
e. Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical ...
Single-linkage clustering. In statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other.
The Calinski–Harabasz index (CHI), also known as the Variance Ratio Criterion (VRC), is a metric for evaluating clustering algorithms, introduced by Tadeusz CaliĆski and Jerzy Harabasz in 1974. [1] It is an internal evaluation metric, where the assessment of the clustering quality is based solely on the dataset and the clustering results ...
A dendrogram is a diagram representing a tree. This diagrammatic representation is frequently used in different contexts: in hierarchical clustering, it illustrates the arrangement of the clusters produced by the corresponding analyses. [4] in computational biology, it shows the clustering of genes or samples, sometimes in the margins of heatmaps.
Complete-linkage clustering. Complete-linkage clustering is one of several methods of agglomerative hierarchical clustering. At the beginning of the process, each element is in a cluster of its own. The clusters are then sequentially combined into larger clusters until all elements end up being in the same cluster.
K-means clustering algorithm and some of its variants (including k-medoids) have been shown to produce good results for gene expression data (at least better than hierarchical clustering methods). Empirical comparisons of k-means, k-medoids, hierarchical methods and, different distance measures can be found in the literature. [18] [19]