Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
Beta function. In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral. for complex number inputs such that .
The reciprocal 1/ X of a random variable X, is a member of the same family of distribution as X, in the following cases: Cauchy distribution, F distribution, log logistic distribution. Examples: If X is a Cauchy (μ, σ) random variable, then 1/ X is a Cauchy (μ / C, σ / C) random variable where C = μ2 + σ2. If X is an F (ν1, ν2) random ...
The beta negative binomial distribution contains the beta geometric distribution as a special case when either = or =. It can therefore approximate the geometric distribution arbitrarily well. It also approximates the negative binomial distribution arbitrary well for large α {\displaystyle \alpha } .
An example of a geometric distribution arises from rolling a six-sided die until a "1" appears. Each roll is independent with a 1 / 6 {\displaystyle 1/6} chance of success. The number of rolls needed follows a geometric distribution with p = 1 / 6 {\displaystyle p=1/6} .
In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1]) is an absolutely continuous probability distribution. If has a beta distribution, then the odds has a beta prime distribution.
Distribution (mathematics) Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable ...
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.