Search results
Results From The WOW.Com Content Network
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi.
For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the center m times. The (non-degenerate) regular stars of up to 12 ...
In geometry, a nonagon (/ ˈ n ɒ n ə ɡ ɒ n /) or enneagon (/ ˈ ɛ n i ə ɡ ɒ n /) is a nine-sided polygon or 9-gon.. The name nonagon is a prefix hybrid formation, from Latin (nonus, "ninth" + gonon), used equivalently, attested already in the 16th century in French nonogone and in English from the 17th century.
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. ... To construct the name of a polygon with more than 20 and fewer than ...
Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star ...
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n-gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn, so the sum of the exterior angles must be 360°. This argument can be generalized to concave simple ...
For any convex polygon, all the diagonals are inside the polygon, but for re-entrant polygons, some diagonals are outside of the polygon. Any n -sided polygon ( n ≥ 3), convex or concave , has n ( n − 3 ) 2 {\displaystyle {\tfrac {n(n-3)}{2}}} total diagonals, as each vertex has diagonals to all other vertices except itself and the two ...
In a parallelogram, where both pairs of opposite sides and angles are equal, this formula reduces to = . Alternatively, we can write the area in terms of the sides and the intersection angle θ of the diagonals, as long θ is not 90°: [18]