Search results
Results From The WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Python has built-in set and frozenset types since 2.4, and since Python 3.0 and 2.7, supports non-empty set literals using a curly-bracket syntax, e.g.: {x, y, z}; empty sets must be created using set(), because Python uses {} to represent the empty dictionary.
Union: the union (called, in some contexts, the maximum or lowest common multiple) of A and B is the multiset C with multiplicity function [13] = ((), ()). Intersection: the intersection (called, in some contexts, the infimum or greatest common divisor ) of A and B is the multiset C with multiplicity function m C ( x ) = min ( m A ( x ) , m B ...
After some operations of Union, some sets are grouped together. The operation Union(x, y) replaces the set containing x and the set containing y with their union. Union first uses Find to determine the roots of the trees containing x and y. If the roots are the same, there is nothing more to do. Otherwise, the two trees must be merged.
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets The intersection of two sets A {\displaystyle A} and B , {\displaystyle B,} denoted by A ∩ B {\displaystyle A\cap B} , [ 3 ] is the set of all objects that ...
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Fuzzy set operations are a generalization of crisp set operations for fuzzy sets.There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions.