Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
A supersaturated solution of sodium acetate in water is supplied with a device to initiate crystallization, a process that releases substantial heat. Solubility from CRC Handbook. Sodium acetate trihydrate crystals melt at 58–58.4 °C (136.4–137.1 °F), [12] [13] and the liquid sodium acetate dissolves in the released water of crystallization.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
A solubility equilibrium exists when a chemical compound in the solid state is in chemical equilibrium with a solution containing the compound. This type of equilibrium is an example of dynamic equilibrium in that some individual molecules migrate between the solid and solution phases such that the rates of dissolution and precipitation are equal to one another.
The temperature of the solution eventually decreases to match that of the surroundings. The equilibrium, between the gas as a separate phase and the gas in solution, will by Le Châtelier's principle shift to favour the gas going into solution as the temperature is decreased (decreasing the temperature increases the solubility of a gas).
Neodymium(III) acetate as a hydrate is a purple solid that is soluble in water. [9] [6] The solubility of the compound increases when sodium acetate is added, forming a blue complex. [10] It forms crystalline hydrates [9] in the composition of Nd(CH 3 COO) 3 ·nH 2 O, where n = 1 and 4 are red-violet crystals that lose water at 110 °C.