When.com Web Search

  1. Ad

    related to: state variable equation matrix form calculator with steps free

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector, the state vector. If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form. [1] [2] The state-space method ...

  3. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  4. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  5. Adjoint state method - Wikipedia

    en.wikipedia.org/wiki/Adjoint_state_method

    An adjoint state equation is introduced, including a new unknown variable. The adjoint method formulates the gradient of a function towards its parameters in a constraint optimization form. By using the dual form of this constraint optimization problem, it can be used to calculate the gradient very fast.

  6. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    In control theory, Ackermann's formula provides a method for designing controllers to achieve desired system behavior by directly calculating the feedback gains needed to place the closed-loop system's poles (eigenvalues) [1] at specific locations (pole allocation problem).

  7. State observer - Wikipedia

    en.wikipedia.org/wiki/State_observer

    In particular, the output of the observer may be subtracted from the output of the plant and then multiplied by a matrix ; this is then added to the equations for the state of the observer to produce a so-called Luenberger observer, defined by the equations below. Note that the variables of a state observer are commonly denoted by a "hat ...

  8. State-transition equation - Wikipedia

    en.wikipedia.org/wiki/State-Transition_Equation

    The state-transition equation is defined as the solution of the linear homogeneous state equation. The linear time-invariant state equation given by = + + (), with state vector x, control vector u, vector w of additive disturbances, and fixed matrices A, B, E can be solved by using either the classical method of solving linear differential equations or the Laplace transform method.

  9. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    The optimal current values of the problem's control variables at any time can be found using the solution of the Riccati equation and the current observations on evolving state variables. With multiple state variables and multiple control variables, the Riccati equation will be a matrix equation. The algebraic Riccati equation determines the ...