When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics. [97] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.

  4. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.

  5. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...

  6. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.

  7. Fibonacci polynomials - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_polynomials

    In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials .

  8. Fibonacci - Wikipedia

    en.wikipedia.org/wiki/Fibonacci

    In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.

  9. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio , and in fact the terms themselves are roundings of integer powers of the golden ...