Search results
Results From The WOW.Com Content Network
Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics. [97] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable.
The term Fibonacci sequence is also applied more generally to any function from the integers to a field for which (+) = + (+).These functions are precisely those of the form () = () + (), so the Fibonacci sequences form a vector space with the functions () and () as a basis.
Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems. A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.
In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation.
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion In mathematics , an infinite sequence of numbers s 0 , s 1 , s 2 , s 3 , … {\displaystyle s_{0},s_{1},s_{2},s_{3},\ldots } is called constant ...
The specific problem is: ... number where Nth is the position # of the Fibonacci number in the sequence. << function ... the Fibonacci sequence over ...
Find relationships between sequences—if the generating functions of two sequences have a similar form, then the sequences themselves may be related. Explore the asymptotic behaviour of sequences. Prove identities involving sequences. Solve enumeration problems in combinatorics and encoding their solutions.