Search results
Results From The WOW.Com Content Network
In 1991, Cohen, together with Frederick Cohen, Benjamin Mann, and R. James Milgram gave a complete description of the algebraic topology of the space of rational functions, and in the following years he made several contributions to the study of related moduli spaces.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...
He is, as of 2011, a professor at the University of Michigan. [2] As of 2024, Fulton had supervised the doctoral work of 24 students at Brown, Chicago, and Michigan. Fulton is known as the author or coauthor of a number of popular texts, including Algebraic Curves and Representation Theory.
Fulton 60, Sacred Heart 33 Mumford 16, Western International 8 This article originally appeared on Detroit Free Press: MHSAA football scores Week 6 of Michigan high school season
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.
This terminology is often used in the case of the algebraic topology on the set of discrete, faithful representations of a Kleinian group into PSL(2,C). Another topology, the geometric topology (also called the Chabauty topology ), can be put on the set of images of the representations, and its closure can include extra Kleinian groups that are ...
Algebraic topology is a branch of mathematics in which tools from abstract algebra are used to study topological spaces Subcategories. This category has the following ...
In mathematics, an algebraic cycle on an algebraic variety V is a formal linear combination of subvarieties of V. These are the part of the algebraic topology of V that is directly accessible by algebraic methods. Understanding the algebraic cycles on a variety can give profound insights into the structure of the variety.