When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. χ = 2 {\displaystyle \ \chi =2\ } ), and applies identically to spherical polyhedra .

  3. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.

  4. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load. The critical load is the greatest load that will not cause lateral deflection (buckling). For loads greater than the critical load, the column will deflect laterally.

  5. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Paul Nahin, a professor emeritus at the University of New Hampshire who wrote a book dedicated to Euler's formula and its applications in Fourier analysis, said Euler's identity is "of exquisite beauty". [8] Mathematics writer Constance Reid has said that Euler's identity is "the most famous formula in all mathematics". [9]

  6. Gysin homomorphism - Wikipedia

    en.wikipedia.org/wiki/Gysin_homomorphism

    The Gysin sequence is a long exact sequence not only for the de Rham cohomology of differential forms, but also for cohomology with integral coefficients. In the integral case one needs to replace the wedge product with the Euler class with the cup product, and the pushforward map no longer corresponds to integration.

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. [16] Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  8. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue. Euler's criterion is related to the law of quadratic reciprocity.

  9. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    This can be seen intuitively in that the Euler class is a class whose degree depends on the dimension of the bundle (or manifold, if the tangent bundle): the Euler class is an element of () where is the dimension of the bundle, while the other classes have a fixed dimension (e.g., the first Stiefel-Whitney class is an element of ()).