When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classical central-force problem - Wikipedia

    en.wikipedia.org/wiki/Classical_central-force...

    Since the speed v is likewise unchanging, the areal velocity 1 ⁄ 2 vr ⊥ is a constant of motion; the particle sweeps out equal areas in equal times. The area A of a circular sector equals 1 ⁄ 2 r 2 φ = 1 ⁄ 2 r 2 ωt = 1 ⁄ 2 r v φ t. Hence, the areal velocity dA/dt equals 1 ⁄ 2 r v φ = 1 ⁄ 2 h.

  3. Areal velocity - Wikipedia

    en.wikipedia.org/wiki/Areal_velocity

    In classical mechanics, areal velocity (also called sector velocity or sectorial velocity) is a pseudovector whose length equals the rate of change at which area is swept out by a particle as it moves along a curve. It has SI units of square meters per second (m 2 /s) and dimension of square length per time L 2 T −1.

  4. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  6. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The other two purple arrows are acceleration components parallel and perpendicular to the velocity. The orbital radius and angular velocity of the planet in the elliptical orbit will vary. This is shown in the animation: the planet travels faster when closer to the Sun, then slower when farther from the Sun. Kepler's second law states that the ...

  7. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field.

  8. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  9. Centripetal force - Wikipedia

    en.wikipedia.org/wiki/Centripetal_force

    In particle accelerators, velocity can be very high (close to the speed of light in vacuum) so the same rest mass now exerts greater inertia (relativistic mass) thereby requiring greater force for the same centripetal acceleration, so the equation becomes: [11] = where = is the Lorentz factor.