When.com Web Search

  1. Ads

    related to: differentiability calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  4. Weak derivative - Wikipedia

    en.wikipedia.org/wiki/Weak_derivative

    In mathematics, a weak derivative is a generalization of the concept of the derivative of a function (strong derivative) for functions not assumed differentiable, but only integrable, i.e., to lie in the L p space ([,]).

  5. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one.

  6. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    Differentiability of functions is a requirement because if a function is not differentiable, then the derivative of the function is not guaranteed to exist at each point in . The fact that I {\displaystyle {\mathcal {I}}} is an open interval is grandfathered in from the hypothesis of the Cauchy's mean value theorem .

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    In calculus, the differential represents the principal part of the change in a function = with respect to changes in the independent variable. The differential is defined by = ′ (), where ′ is the derivative of f with respect to , and is an additional real variable (so that is a function of and ).

  8. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Other functions cannot be differentiated at all, giving rise to the concept of differentiability. A closely related concept to the derivative of a function is its differential. When x and y are real variables, the derivative of f at x is the slope of the tangent line to the graph of f at x.