When.com Web Search

  1. Ads

    related to: factor analysis in spss interpretation examples in statistics test

Search results

  1. Results From The WOW.Com Content Network
  2. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    Canonical factor analysis, also called Rao's canonical factoring, is a different method of computing the same model as PCA, which uses the principal axis method. Canonical factor analysis seeks factors that have the highest canonical correlation with the observed variables. Canonical factor analysis is unaffected by arbitrary rescaling of the data.

  3. Confirmatory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Confirmatory_factor_analysis

    In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social science research. [1] It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to ...

  4. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. [1] The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA).

  5. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    Exploratory Factor Analysis Model. In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to uncover the underlying structure of a relatively large set of variables. EFA is a technique within factor analysis whose overarching goal is to identify the underlying relationships between measured variables. [1]

  6. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    Thus, in this example, we may want to perform a factorial analysis in which two individuals are close if they have both expressed the same opinions and the same behaviour. Sensory analysis A same set of products has been evaluated by a panel of experts and a panel of consumers. For its evaluation, each jury uses a list of descriptors (sour ...

  7. Factor analysis of mixed data - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis_of_mixed_data

    The data include quantitative variables =, …, and qualitative variables =, …,.. is a quantitative variable. We note: . (,) the correlation coefficient between variables and ;; (,) the squared correlation ratio between variables and .; In the PCA of , we look for the function on (a function on assigns a value to each individual, it is the case for initial variables and principal components ...

  8. Kaiser–Meyer–Olkin test - Wikipedia

    en.wikipedia.org/wiki/Kaiser–Meyer–Olkin_test

    The Kaiser–Meyer–Olkin (KMO) test is a statistical measure to determine how suited data is for factor analysis. The test measures sampling adequacy for each variable in the model and the complete model. The statistic is a measure of the proportion of variance among variables that might be common variance.

  9. Friedman test - Wikipedia

    en.wikipedia.org/wiki/Friedman_test

    Not all statistical packages support post-hoc analysis for Friedman's test, but user-contributed code exists that provides these facilities (for example in SPSS, [10] and in R. [11]). The R package titled PMCMRplus contains numerous non-parametric methods for post-hoc analysis after Friedman, [12] including support for the Nemenyi test.