When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : XY is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : XY is continuous. [4]

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    In mathematics, the closed graph theorem may refer to one of several basic results characterizing continuous functions in terms of their graphs. Each gives conditions when functions with closed graphs are necessarily continuous. A blog post [1] by T. Tao lists several closed graph theorems throughout mathematics.

  4. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    Precisely, the theorem states that a linear operator between two Banach spaces is continuous if and only if the graph of the operator is closed (such an operator is called a closed linear operator; see also closed graph property). An important question in functional analysis is whether a given linear operator is continuous (or bounded).

  5. Graph homology - Wikipedia

    en.wikipedia.org/wiki/Graph_homology

    We return to the graph with 3 vertices {x,y,z} and 4 edges {a: xy, b: yz, c: zx, d: zx}. Recall that the group C 0 is generated by the set of vertices. Since there are no (−1)-dimensional elements, the group C −1 is trivial, and so the entire group C 0 is a kernel of the corresponding boundary operator: ker ⁡ ∂ 0 = C 0 ...

  6. Tietze extension theorem - Wikipedia

    en.wikipedia.org/wiki/Tietze_extension_theorem

    Pavel Urysohn. In topology, the Tietze extension theorem (also known as the Tietze–Urysohn–Brouwer extension theorem or Urysohn-Brouwer lemma [1]) states that any real-valued, continuous function on a closed subset of a normal topological space can be extended to the entire space, preserving boundedness if necessary.

  7. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    When we try to draw a general continuous function, we usually draw the graph of a function which is Lipschitz or otherwise well-behaved. Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere ...

  8. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    x:= 0 y:= 0 x2:= 0 y2:= 0 while (x2 + y2 ≤ 4 and iteration < max_iteration) do y:= 2 * x * y + y0 x:= x2 - y2 + x0 x2:= x * x y2:= y * y iteration:= iteration + 1 Note that in the above pseudocode, 2 x y {\displaystyle 2xy} seems to increase the number of multiplications by 1, but since 2 is the multiplier the code can be optimized via ( x ...

  9. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  1. Related searches is a graph continuous hole called the y value of z is 4 x 9 1 4 lsl rim board

    closed graph theorem mathclosed graphs wikipedia
    closed graph properties