Ad
related to: fastest data transmission speed unit in computer hardware
Search results
Results From The WOW.Com Content Network
While the gross data rate equals 33.3 million 4-bit-transfers per second (or 16.67 MB/s), the fastest transfer, firmware read, results in 15.63 MB/s. The next fastest bus cycle, 32-bit ISA-style DMA write, yields only 6.67 MB/s. Other transfers may be as low as 2 MB/s. [42]
In telecommunications, data transfer rate is the average number of bits , characters or symbols , or data blocks per unit time passing through a communication link in a data-transmission system. Common data rate units are multiples of bits per second (bit/s) and bytes per second (B/s).
Four PCI Express bus card slots (from top to second from bottom: ×4, ×16, ×1 and ×16), compared to a 32-bit conventional PCI bus card slot (very bottom). In computer architecture, a bus (historically also called a data highway [1] or databus) is a communication system that transfers data between components inside a computer or between computers. [2]
For example, the wire speed of Fast Ethernet is 100 Mbit/s [1] also known as the peak bitrate, connection speed, useful bit rate, information rate, or digital bandwidth capacity. The wire speed is the data transfer rate that a telecommunications standard provides at a reference point between the physical layer and the data link layer. [2]
In the 1990s, newer UARTs were developed with on-chip buffers. This allowed higher transmission speed without data loss and without requiring such frequent attention from the computer. For example, the popular National Semiconductor 16550 has a 16-byte FIFO, and spawned many variants, including the 16C550, 16C650, 16C750, and 16C850.
The Smartmodem was an otherwise standard 103A 300 bit/s direct-connect modem, but it introduced a command language which allowed the computer to make control requests, such as commands to dial or answer calls, over the same RS-232 interface used for the data connection. [14]
Full speed (FS) rate of 12 Mbit/s is the basic USB signaling rate defined by USB 1.0. All USB hubs can operate at this rate. High speed (HS) rate of 480 Mbit/s was introduced in 2001 by USB 2.0. High-speed devices must also be capable of falling-back to full-speed as well, making high-speed devices backward compatible with USB 1.1 hosts ...
Generally, layers are named by their specifications: [8] 10, 100, 1000, 10G, ... – the nominal, usable speed at the top of the physical layer (no suffix = megabit/s, G = gigabit/s), excluding line codes but including other physical layer overhead (preamble, SFD, IPG); some WAN PHYs (W) run at slightly reduced bitrates for compatibility reasons; encoded PHY sublayers usually run at higher ...