Ads
related to: 2nd external derivative symmetry equation solver download
Search results
Results From The WOW.Com Content Network
The symmetry may be broken if the function fails to have differentiable partial derivatives, which is possible if Clairaut's theorem is not satisfied (the second partial derivatives are not continuous). The function f(x, y), as shown in equation , does not have symmetric second derivatives at its origin.
Because the exterior derivative d has the property that d 2 = 0, it can be used as the differential (coboundary) to define de Rham cohomology on a manifold. The k -th de Rham cohomology (group) is the vector space of closed k -forms modulo the exact k -forms; as noted in the previous section, the Poincaré lemma states that these vector spaces ...
The symmetric derivative at a given point equals the arithmetic mean of the left and right derivatives at that point, if the latter two both exist. [1] [2]: 6 Neither Rolle's theorem nor the mean-value theorem hold for the symmetric derivative; some similar but weaker statements have been proved.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Mathieu's differential equations appear in a wide range of contexts in engineering, physics, and applied mathematics. Many of these applications fall into one of two general categories: 1) the analysis of partial differential equations in elliptic geometries, and 2) dynamical problems which involve forces that are periodic in either space or time.
Thus, when one separates variables for first-order equations, one in fact moves the dx denominator of the operator to the side with the x variable, and the d(y) is left on the side with the y variable. The second-derivative operator, by analogy, breaks down as follows:
A disadvantage is that compact schemes are implicit and require to solve a diagonal matrix system for the evaluation of interpolations or derivatives at all grid points. Due to their excellent stability properties, compact schemes are a popular choice for use in higher-order numerical solvers for the Navier-Stokes Equations .
In the discrete case, the standard central difference approximation of the second derivative is used on a uniform grid. These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables , as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid ...