When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j). A positive symmetric matrix. Matrix of ones: A matrix with all entries equal to one. a ij = 1. Pascal matrix: A matrix containing the entries of Pascal's ...

  4. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    A is row-equivalent to the n-by-n identity matrix I n. A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly one solution for each b in K n.

  5. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  6. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix of any orthonormal basis is the identity matrix. Equivalently, the Gram matrix of the rows or the columns of a real rotation matrix is the identity matrix. Likewise, the Gram matrix of the rows or columns of a unitary matrix is the identity matrix.

  7. Weinstein–Aronszajn identity - Wikipedia

    en.wikipedia.org/wiki/Weinstein–Aronszajn_identity

    The identity may be proved as follows. [1] Let be a matrix consisting of the four blocks, , and : = (). Because I m is invertible, the formula for the determinant of a block matrix gives

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  9. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    A diagonal matrix may have additional non-diagonal roots if some entries on the diagonal are equal, as exemplified by the identity matrix above. If U is an upper triangular matrix (meaning its entries are u i , j = 0 {\displaystyle u_{i,j}=0} for i > j {\displaystyle i>j} ) and at most one of its diagonal entries is zero, then one upper ...