When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nucleic acid tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_tertiary...

    Three DNA conformations are believed to be found in nature, A-DNA, B-DNA, and Z-DNA. The "B" form described by James D. Watson and Francis Crick is believed to predominate in cells. [ 2 ] James D. Watson and Francis Crick described this structure as a double helix with a radius of 10 Å and pitch of 34 Å , making one complete turn about its ...

  3. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    The conformation of G is syn, C2'-endo; for C it is anti, C3'-endo. [13] A linear DNA molecule having free ends can rotate, to adjust to changes of various dynamic processes in the cell, by changing how many times the two chains of its double helix twist around each other. Some DNA molecules are circular and are topologically constrained.

  4. Molecular models of DNA - Wikipedia

    en.wikipedia.org/wiki/Molecular_models_of_DNA

    The DNA "tile" structure in this image consists of four branched junctions oriented at 90° angles. Each tile consists of nine DNA oligonucleotides as shown; such tiles serve as the primary "building block" for the assembly of the DNA nanogrids shown in the AFM micrograph. Quadruplex DNA may be involved in certain cancers.

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    According to another study, when measured in a different solution, the DNA chain measured 22–26 Å (2.2–2.6 nm) wide, and one nucleotide unit measured 3.3 Å (0.33 nm) long. [10] The buoyant density of most DNA is 1.7g/cm 3. [11] DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together.

  6. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...

  7. Hi-C (genomic analysis technique) - Wikipedia

    en.wikipedia.org/wiki/Hi-C_(genomic_analysis...

    The ideal size of DNA fragments for the sequencing library depends on the sequencing platform that will be used. [4] [16] DNA can first be sheared to fragments around 300–500 bp long using sonication. [4] [16] [17] Fragments of this size are suitable for high-throughput sequencing.

  8. G-quadruplex - Wikipedia

    en.wikipedia.org/wiki/G-quadruplex

    The BER pathway is signalled when it indicates an oxidative DNA base damage, where structures like, 8-Oxoguanine-DNA glycosylase 1 (OGG1), APE1 and G-quadruplex play a huge role in its repair. These enzymes participate in BER to repair certain DNA lesions such as 7,8-dihydro-8-oxoguanine (8-oxoG), which forms under oxidative stress to guanine ...

  9. Nucleic acid secondary structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_secondary...

    For example, the RNA component of the human telomerase contains a pseudoknot that is critical for its activity. [7] The hepatitis delta virus ribozyme is a well known example of a catalytic RNA with a pseudoknot in its active site. [10] [11] Though DNA can also form pseudoknots, they are generally not present in standard physiological conditions.