Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...
In contrast, by the Lindemann–Weierstrass theorem, the sine or cosine of any non-zero algebraic number is always transcendental. [4] The real part of any root of unity is a trigonometric number. By Niven's theorem, the only rational trigonometric numbers are 0, 1, −1, 1/2, and −1/2. [5]
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite to that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to ...
Comparison of graphs of the parabolas x(180 − x)/8100 and x(180 − x)/9000 with the graph of sin x (with x in degrees) The part of the graph of sin x in the range from 0° to 180° "looks like" part of a parabola through the points (0, 0) and (180, 0). The general form of such a parabola is (). The parabola that also passes through (90, 1 ...
and is the positive root of the equation x 2 − x − n = 0. For n = 1, this root is the golden ratio φ, approximately equal to 1.618. The same procedure also works to obtain, if n > 0, = (+ +), which is the positive root of the equation x 2 + x − n = 0.
A calculation confirms that z(0) = 1, and z is a constant so z = 1 for all x, so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine.
a term with real characteristic roots converges to 0 as t grows indefinitely large if the absolute value of the characteristic root is less than 1. If the absolute value equals 1, the term will stay constant as t grows if the root is +1 but will fluctuate between two values if the root is −1. If the absolute value of the root is greater than ...