When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pullback (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(category_theory)

    Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.

  3. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    The limit of this diagram is called the J th power of X and denoted X J. Equalizers. If J is a category with two objects and two parallel morphisms from one object to the other, then a diagram of shape J is a pair of parallel morphisms in C. The limit L of such a diagram is called an equalizer of those morphisms. Kernels.

  4. Pullback - Wikipedia

    en.wikipedia.org/wiki/Pullback

    The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...

  5. Pullback (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(differential...

    This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .

  6. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The exterior derivative is natural in the technical sense: if f : M → N is a smooth map and Ω k is the contravariant smooth functor that assigns to each manifold the space of k-forms on the manifold, then the following diagram commutes so d( f ∗ ω) = f ∗ dω, where f ∗ denotes the pullback of f .

  7. Pushout (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pushout_(category_theory)

    In category theory, a branch of mathematics, a pushout (also called a fibered coproduct or fibered sum or cocartesian square or amalgamated sum) is the colimit of a diagram consisting of two morphisms f : Z → X and g : Z → Y with a common domain.

  8. Pullback bundle - Wikipedia

    en.wikipedia.org/wiki/Pullback_bundle

    In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).

  9. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    A homotopy pullback (or homotopy fiber-product) is the dual concept of a homotopy pushout. It satisfies the universal property of a pullback up to homotopy. [ citation needed ] Concretely, given f : X → Z {\displaystyle f:X\to Z} and g : Y → Z {\displaystyle g:Y\to Z} , it can be constructed as