Search results
Results From The WOW.Com Content Network
A concurrent programming language is defined as one which uses the concept of simultaneously executing processes or threads of execution as a means of structuring a program. A parallel language is able to express programs that are executable on more than one processor.
In a multiprocessor system executing a single set of instructions , data parallelism is achieved when each processor performs the same task on different distributed data. In some situations, a single execution thread controls operations on all the data. In others, different threads control the operation, but they execute the same code.
A task-parallel model focuses on processes, or threads of execution. These processes will often be behaviourally distinct, which emphasises the need for communication. Task parallelism is a natural way to express message-passing communication. In Flynn's taxonomy, task parallelism is usually classified as MIMD/MPMD or MISD.
In computing, a channel is a model for interprocess communication and synchronization via message passing. A message may be sent over a channel, and another process or thread is able to receive messages sent over a channel it has a reference to, as a stream. Different implementations of channels may be buffered or not, and either synchronous or ...
The other thread is pushed onto the bottom of the deque, but the processor continues execution of its current thread. Initially, a computation consists of a single thread and is assigned to some processor, while the other processors start off idle. Any processor that becomes idle starts the actual process of work stealing, which means the ...
In computer science, gang scheduling is a scheduling algorithm for parallel systems that schedules related threads or processes to run simultaneously on different processors. Usually these will be threads all belonging to the same process, but they may also be from different processes, where the processes could have a producer-consumer ...
In computer science, compare-and-swap (CAS) is an atomic instruction used in multithreading to achieve synchronization.It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value.
In computer science, message passing is a technique for invoking behavior (i.e., running a program) on a computer.The invoking program sends a message to a process (which may be an actor or object) and relies on that process and its supporting infrastructure to then select and run some appropriate code.