Search results
Results From The WOW.Com Content Network
A solution to Kirkman's schoolgirl problem with vertices denoting girls and colours denoting days of the week [1]. Kirkman's schoolgirl problem is a problem in combinatorics proposed by Thomas Penyngton Kirkman in 1850 as Query VI in The Lady's and Gentleman's Diary (pg.48).
Consider the problem of distributing objects given by a generating function into a set of n slots, where a permutation group G of degree n acts on the slots to create an equivalence relation of filled slot configurations, and asking about the generating function of the configurations by weight of the configurations with respect to this equivalence relation, where the weight of a configuration ...
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures.It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.
In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
In combinatorics, Bertrand's ballot problem is the question: "In an election where candidate A receives p votes and candidate B receives q votes with p > q, what is the probability that A will be strictly ahead of B throughout the count under the assumption that votes are counted in a randomly picked order?" The answer is
The use of exponential generating functions (EGFs) to study the properties of Stirling numbers is a classical exercise in combinatorial mathematics and possibly the canonical example of how symbolic combinatorics is used. It also illustrates the parallels in the construction of these two types of numbers, lending support to the binomial-style ...
The three-choose-two combination yields two results, depending on whether a bin is allowed to have zero items. In both results the number of bins is 3. If zero is not allowed, the number of cookies should be n = 6, as described in the previous figure. If zero is allowed, the number of cookies should only be n = 3.