Search results
Results From The WOW.Com Content Network
A packing density or packing fraction of a packing in some space is the fraction of the space filled by the figures making up the packing. In simplest terms, this is the ratio of the volume of bodies in a space to the volume of the space itself. In packing problems, the objective is usually to obtain a packing of the greatest possible density.
The strictly jammed (mechanically stable even as a finite system) regular sphere packing with the lowest known density is a diluted ("tunneled") fcc crystal with a density of only π √ 2 /9 ≈ 0.49365. [6] The loosest known regular jammed packing has a density of approximately 0.0555. [7]
A compact binary circle packing with the most similarly sized circles possible. [7] It is also the densest possible packing of discs with this size ratio (ratio of 0.6375559772 with packing fraction (area density) of 0.910683). [8] There are also a range of problems which permit the sizes of the circles to be non-uniform.
The higher the packing density, the less empty space there is in the packing and thus the smaller the volume of the hull (in comparison to other packings with the same number and size of spheres). To pack the spheres efficiently, it might be asked which packing has the highest possible density.
The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.
The atomic packing factor of a unit cell is relevant to the study of materials science, where it explains many properties of materials. For example, metals with a high atomic packing factor will have a higher "workability" (malleability or ductility ), similar to how a road is smoother when the stones are closer together, allowing metal atoms ...
Usually the packing must be without overlaps between goods and other goods or the container walls. In some variants, the aim is to find the configuration that packs a single container with the maximal packing density. More commonly, the aim is to pack all the objects into as few containers as possible. [1]
The definition of packing fraction can be given as: "the volume taken by number of particles in a given space of volume". In other words, packing fraction defines the packing density. It has been shown that the filling fraction increases with the number of taps until the saturation density is reached.