Search results
Results From The WOW.Com Content Network
The rhombic dodecahedron forms the maximal cross-section of a 24-cell, and also forms the hull of its vertex-first parallel projection into three dimensions. The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24 ...
Rhombic hexahedron (Dual of tetratetrahedron) — V(3.3.3.3) arccos (0) = π / 2 90° Rhombic dodecahedron (Dual of cuboctahedron) — V(3.4.3.4) arccos (- 1 / 2 ) = 2 π / 3 120° Rhombic triacontahedron (Dual of icosidodecahedron) — V(3.5.3.5) arccos (- √ 5 +1 / 4 ) = 4 π / 5 144° Medial rhombic ...
The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...
Truncated dodecahedron: 3.10.10: 20 triangles 12 decagons: 90 60 I h: Truncated icosahedron: 5.6.6: 12 pentagons 20 hexagons 90 60 I h: Rhombicosidodecahedron: 3.4.5.4: 20 triangles 30 squares 12 pentagons 120 60 I h: Truncated icosidodecahedron: 4.6.10: 30 squares 20 hexagons 12 decagons 180 120 I h: Snub dodecahedron: 3.3.3.3.5: 80 triangles ...
Alternatively, if you expand each of five cubes by moving the faces away from the origin the right amount and rotating each of the five 72° around so they are equidistant from each other, without changing the orientation or size of the faces, and patch the pentagonal and triangular holes in the result, you get a rhombicosidodecahedron ...
In geometry, the elongated dodecahedron, [1] extended rhombic dodecahedron, rhombo-hexagonal dodecahedron [2] or hexarhombic dodecahedron [3] is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular depending on the shape of the rhombi.
It is given a Schläfli symbol t 0,2 {5 ⁄ 2,5}, and by the Wythoff construction this polyhedron can also be named a cantellated great dodecahedron. Cartesian coordinates [ edit ]
The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]