Search results
Results From The WOW.Com Content Network
Quantum physics allows for certain states, called entangled states, that show certain statistical correlations between measurements on the two particles which cannot be explained by classical theory. For details, see Quantum entanglement .
An electron state has spin number s = 1 / 2 , consequently m s will be + 1 / 2 ("spin up") or - 1 / 2 "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one ...
Quantum anomalous Hall state: A state which has a quantized Hall resistance even in the absence of external magnetic field. Topological insulator: a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor. Fractional Chern insulator: A generalization of fractional quantum Hall state to ...
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
In quantum mechanics, a quantum state is typically represented as an element of a complex Hilbert space, for example, the infinite-dimensional vector space of all possible wavefunctions (square integrable functions mapping each point of 3D space to a complex number) or some more abstract Hilbert space constructed more algebraically.
At the heart of quantum “weirdness” and the measurement problem, there is a concept called “superposition.” Because the possible states of a quantum system are described using wave ...
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position.
A stationary state is a quantum state with all observables independent of time. It is an eigenvector of the energy operator (instead of a quantum superposition of different energies). It is also called energy eigenvector , energy eigenstate , energy eigenfunction , or energy eigenket .