Search results
Results From The WOW.Com Content Network
In mathematics, an embedding (or imbedding [1]) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X {\displaystyle X} is said to be embedded in another object Y {\displaystyle Y} , the embedding is given by some injective and structure-preserving map f : X → ...
A smooth embedding is an injective immersion f : M → N that is also a topological embedding, so that M is diffeomorphic to its image in N. An immersion is precisely a local embedding – that is, for any point x ∈ M there is a neighbourhood, U ⊆ M, of x such that f : U → N is an embedding, and conversely a local embedding is an ...
An embedded graph uniquely defines cyclic orders of edges incident to the same vertex. The set of all these cyclic orders is called a rotation system.Embeddings with the same rotation system are considered to be equivalent and the corresponding equivalence class of embeddings is called combinatorial embedding (as opposed to the term topological embedding, which refers to the previous ...
The technical statement appearing in Nash's original paper is as follows: if M is a given m-dimensional Riemannian manifold (analytic or of class C k, 3 ≤ k ≤ ∞), then there exists a number n (with n ≤ m(3m+11)/2 if M is a compact manifold, and with n ≤ m(m+1)(3m+11)/2 if M is a non-compact manifold) and an isometric embedding ƒ: M → R n (also analytic or of class C k). [15]
The embedding of X into Y is a compact operator: any bounded set in X is totally bounded in Y, i.e. every sequence in such a bounded set has a subsequence that is Cauchy in the norm ||•|| Y. If Y is a Banach space, an equivalent definition is that the embedding operator (the identity) i : X → Y is a compact operator.
In Galois theory, a branch of mathematics, the embedding problem is a generalization of the inverse Galois problem. Roughly speaking, it asks whether a given Galois extension can be embedded into a Galois extension in such a way that the restriction map between the corresponding Galois groups is given.
In mathematics, particularly in differential topology, there are two Whitney embedding theorems, named after Hassler Whitney: . The strong Whitney embedding theorem states that any smooth real m-dimensional manifold (required also to be Hausdorff and second-countable) can be smoothly embedded in the real 2m-space, , if m > 0.
Nash's results proving the conjecture are now known as the Nash embedding theorems, the second of which Mikhael Gromov has called "one of the main achievements of mathematics of the twentieth century". [29] Nash's first embedding theorem was found in 1953. [28]